

Novel norbornane-based nucleoside and nucleotide analogues and their antiviral activities

Milan Dejmek¹, Michal Šála¹, Hubert Hřebabecký¹, Graciela Andrei², Jan Balzarini², Lieve Naesens², Johan Neyts², <u>Radim</u> Nencka¹*

¹Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, v.v.i., Czech Republic

²Rega Institute for Medical Research, Minderbroedersstraat 10, BE-3000, Leuven, Belgium

nencka@uochb.cas.cz

INVESTMENTS IN EDUCATION DEVELOPMENT

INTRODUCTION

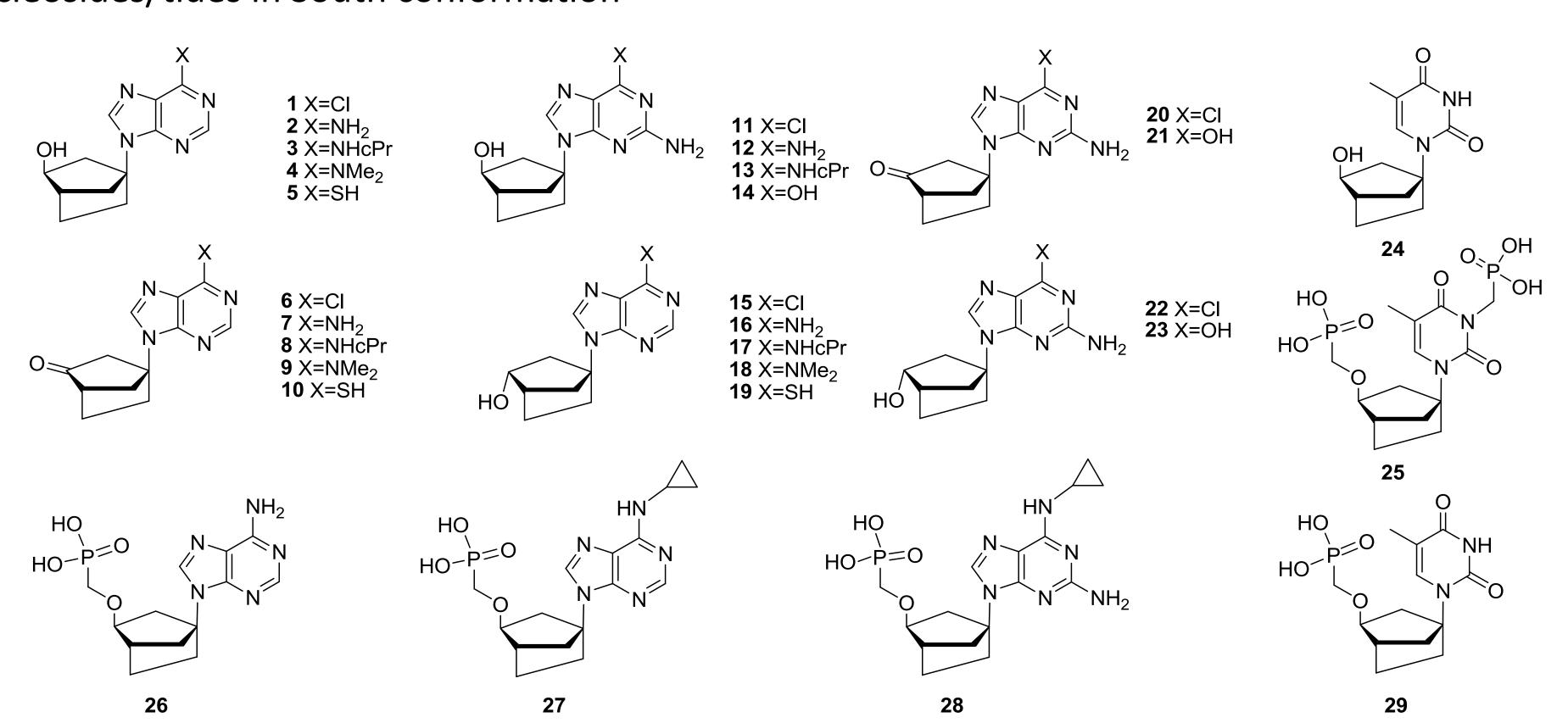
Nucleoside and nucleotide antiviral therapeutics have always exceeded all other classes of drugs used in the treatment of viral diseases. Various locked nucleosides were reported in the past and some of them brought a significant promise for the successful treatment of infections caused by diverse viral pathogens.¹

Recently, we introduced norbornane as one of the possible bicyclic systems that could serve as a conformationally locked substitute of a natural furanose ring and we showed that several 9-norbornylpurines exert significant activity against Coxsackieviruses (*Picornaviridae*).^{2,3}

RESULTS AND DISCUSION

In our current work, we have turned our attention to the conformationally locked norbornane-based derivatives of abacavir, a commercially successful anti-HIV agent, and prepared a number of derivatives with the pseudosugar locked in North, South and also East conformation in order to investigate their potential to serve as antiviral agents.

Table 1. Antiviral activities of prepared nucleosides


Compound	FHV EC ₅₀ (μg.mL ⁻¹)	HIV 1 EC ₅₀ (μg.mL ⁻¹)	HIV 2 EC ₅₀ (μg.mL ⁻¹)	CVB3 EC ₅₀ (μg.mL ⁻¹)	Toxicity CC ₅₀ (μg.mL ⁻¹)
1	ND	ND	ND	8.7	>100 ^a
2	14±3	>100	>100	>100	>100 ^b
6	ND	ND	ND	7.6	>100 ^a
7	7±2	>100	>100	>100	>100 ^b
8	52±7	>20	>20	ND	>100 ^b
11	>100	>20	≥20	13.6	100 ^a
15	ND	ND	ND	22	ND^a
16	51±1	>20	>20	>100	>100 ^b
17	42±15	>100	>100	>100	>100 ^b
20	ND	>100	>100	15.3	>100 ^a
22	ND	>100	>100	9.8	>100 ^a
30	ND	ND	ND	7.0	100 ^a
31	15±2	26 ± 7.8	60 ± 17	>100	>100 ^b
35	>20	>4	>4	8.9	>100 ^a
44	ND	ND	ND	8.0	>100 ^a
49	ND	>100	>100	9.3	>100 ^a

Cytotoxicity in VERO cells. bCytotoxicity in CRFK cell cultures

CONCLUSION

A number of the obtained nucleoside derivatives exerted significant activities against Feline herpes virus (FHV) or Coxsackievirus B3 (CVB3). Only one analogue locked in North conformation, the adenine derivative **31**, exerted modest activity against HIV. This compound inhibited also the replication of FHV and Influenza H1N1. Most of the prepared nucleotide derivatives exerted rather cytotoxic effect than desired antiviral activity.

Nucleosides/tides in South conformation

Nucleosides/tides in North conformation

Nucleosides/tides in East conformation

REFERENCES

- 1. Marquez, V. E. *Modified Nucleosides: in Biochemistry, Biotechnology and Medicine.* Wiley-VCH: 2008; p 684.
- 2. Šála, M.; De Palma, A. M.; Hřebabecký, H. *et al. Bioorg. Med. Chem. Lett.* **2011**, *21*, 4271-4275.
- 3. Šála, M.; De Palma, A. M.; Hřebabecký, H. et al. Bioorg. Med. Chem. 2010, 18, 4374-4384.

ACKNOWLEDGEMENT

Authors are grateful to project CZ.1.07/2.2.00/28.0184 coming from European Social Fund. The study was supported by Gilead Sciences, Inc. (Foster City, CA, USA) and subvention for development of research organization (RVO: 61388963).